Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
1.
Biologicals ; : 101763, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38641502

ABSTRACT

This study aimed to investigate the prevalence of viral agents causing reproductive failure in pigs in Korea. In addition, two types of multiplex real-time PCR (mqPCR) were developed for the simultaneous detection of Aujeszky's disease virus (ADV) and porcine parvovirus (PPV) in mqPCR and encephalomyocarditis virus (EMCV) and Japanese encephalitis virus (JEV) in reverse transcription mqPCR (mRT-qPCR). A total of 150 aborted fetus samples collected from 2020 to 2022 were analyzed. Porcine reproductive and respiratory syndrome virus was the most prevalent (49/150 32.7%), followed by porcine circovirus type 2 (31/150, 20.7%), and PPV1 (7/150, 4.7%), whereas ADV, EMCV, and JEV were not detected. The newly developed mqPCR and mRT-qPCR could simultaneously detect and differentiate with high sensitivities and specificities. When applied to aborted fetuses, the newly developed mqPCR for PPV was 33.3% more sensitivities than the previously established diagnostic method. Amino acid analysis of the VP2 sequences of PPV isolates revealed considerable similarity to the highly pathogenic Kresse strain. This study successfully evaluated the prevalence of viral agents causing reproductive failure among swine in Korea, the developed mqPCR and mRT-qPCR methods could be utilized as effective and accurate diagnostic methods for the epidemiological surveillance of ADV, PPV, EMCV, and JEV.

2.
Viruses ; 15(12)2023 Nov 30.
Article in English | MEDLINE | ID: mdl-38140612

ABSTRACT

Novel swine orthopneumovirus (SOV) infections have been identified in pigs in the USA and some European countries but not in Asian countries, including South Korea, to date. The current study reports the first SOV infections in four domestic pig farms located in four provinces across South Korea. The detection rate of SOV in oral fluid samples using qRT-PCR was 4.4% (14/389), indicating the presence of the virus in pigs at commercial farms in Korea. Two complete genome sequences and one glycoprotein (G) gene sequence were obtained from SOV-positive samples. The complete genome analysis of KSOV-2201 and KSOV-2202 strains showed 98.2 and 95.4% homologies with a previously reported SOV, and the phylogenetic tree exhibited a high correlation with a previously reported SOV strain from the US and a canine pneumovirus (CPnV) strain from China. Based on the genetic analysis of the viral G gene, the murine pneumonia virus (MPV)-like orthopneumoviruses (MLOVs) were divided into two genogroups (G1 and G2). Seventeen CPnVs and two feline pneumoviruses were grouped into G1, while the Korean SOV strains identified in this study were grouped into G2 along with one SOV and two CPnVs. These results will contribute to expanding our understanding of the geographical distribution and genetic characteristics of the novel SOV in the global pig population.


Subject(s)
Pneumovirus , Swine Diseases , Mice , Swine , Animals , Cats , Dogs , Sus scrofa , Respiratory Syncytial Viruses , Farms , Phylogeny , Swine Diseases/epidemiology , Republic of Korea/epidemiology
3.
Viruses ; 15(11)2023 Nov 01.
Article in English | MEDLINE | ID: mdl-38005882

ABSTRACT

For rapid and reliable detection of porcine epidemic diarrhea virus (PEDV) from pig clinical samples, a multiplex, real-time, reverse transcription loop-mediated isothermal amplification (mqRT-LAMP) was developed using two sets of primers and assimilating probes specific to the PEDV N gene and the Sus scrofa ß-actin gene, which was used as an endogenous internal positive control (EIPC) to avoid false-negative results. The assay specifically amplified both target genes of PEDV and EIPC in a single reaction without any interference but did not amplify other porcine viral nucleic acids. The limit of detection was 10 copies/µL, 100-fold lower than that of a reverse transcription-polymerase chain reaction (RT-PCR) and equivalent to that of quantitative/real-time RT-PCR (qRT-PCR). This assay has high repeatability and reproducibility with coefficients of variation < 4.0%. The positive signal of the mqRT-LAMP assay was generated within 25 min, demonstrating advantages in rapid detection of PEDV over RT-PCR or qRT-PCR assay, which require at least 2 h turnaround times. In clinical evaluation, the detection rate of PEDV by mqRT-LAMP assay (77.3%) was higher than that of RT-PCR assay (69.7%), and comparable to qRT-PCR (76.8%) with almost 100% concordance (kappa value 0.98). The developed mqRT-LAMP assay can serve as an advanced alternative method for PEDV diagnosis because it has high sensitivity and specificity, rapidity, and reliability even in resource-limited laboratories.


Subject(s)
Coronavirus Infections , Porcine epidemic diarrhea virus , Swine Diseases , Animals , Swine , Porcine epidemic diarrhea virus/genetics , Reverse Transcription , Reproducibility of Results , Coronavirus Infections/diagnosis , Coronavirus Infections/veterinary , Sensitivity and Specificity , Swine Diseases/diagnosis , Nucleic Acid Amplification Techniques/methods
4.
Animals (Basel) ; 13(18)2023 Sep 21.
Article in English | MEDLINE | ID: mdl-37760391

ABSTRACT

Feline panleukopenia virus (FPV), a member of the species Protoparvovirus carnivoran1, is one of the most fatal pathogens of domestic and wild carnivores. The virus endemically infects domestic carnivores worldwide and its cross-species transmission threatens endangered wild carnivores, including Siberian tigers. In this study, a fatal FPV infection in endangered Siberian tigers was investigated to trace the origin of the virus and elucidate the reason behind FPV's infection of the vaccinated tigers. Our genetic characterization and phylogenetic analysis revealed that the virus detected in the infected tigers, designated as the KTPV-2305 strain, was closely related to FPV strains circulating in Korean cats, suggesting that it might have been transmitted from stray cats wandering around the zoo. Compared with the prototype FPV reference strains, the KTPV-2305 strain carried three distinct amino acid (aa) mutations in the VP2 protein sequence (I101T, I232V, and L562V) in this study. These three mutations are commonly found in most global FPV strains, including Korean strains, indicating that these mutations are common evolutionary characteristics of currently circulating global FPVs. The reason why the vaccinated tigers were infected with FPV was most likely the insufficient protective immunity of the affected tigress or vaccine failure triggered by the interference of maternal-derived antibodies in the affected tiger cubs. These findings suggest that improved vaccination guidelines are urgently needed to save the lives of wild carnivores from this fatal virus.

5.
Microorganisms ; 11(7)2023 Jul 05.
Article in English | MEDLINE | ID: mdl-37512923

ABSTRACT

Influenza D virus (IDV) belongs to the Orthomyxoviridae family, which also include the influenza A, B and C virus genera. IDV was first detected and isolated in 2011 in the United States from pigs with respiratory illness. IDV circulates in mammals, including pigs, cattle, camelids, horses and small ruminants. Despite the broad host range, cattle are thought to be the natural reservoir of IDV. This virus plays a role as a causative agent of the bovine respiratory disease complex (BRDC). IDV has been identified in North America, Europe, Asia and Africa. However, there has been no information on the presence of IDV in the Republic of Korea (ROK). In this study, we investigated the presence of viral RNA and seroprevalence to IDV among cattle and pigs in the ROK in 2022. Viral RNA was surveyed by the collection and testing of 999 cattle and 2391 pig nasal swabs and lung tissues using a real-time RT-PCR assay. IDV seroprevalence was investigated by testing 742 cattle and 1627 pig sera using a hemagglutination inhibition (HI) assay. The viral RNA positive rate was 1.4% in cattle, but no viral RNA was detected in pigs. Phylogenetic analysis of the hemagglutinin-esterase-fusion (HEF) gene was further conducted for a selection of samples. All sequences belonged to the D/Yamagata/2019 lineage. The seropositivity rates were 54.7% in cattle and 1.4% in pigs. The geometric mean of the antibody titer (GMT) was 68.3 in cattle and 48.5 in pigs. This is the first report on the detection of viral RNA and antibodies to IDV in the ROK.

6.
Pathogens ; 12(5)2023 May 07.
Article in English | MEDLINE | ID: mdl-37242356

ABSTRACT

Porcine deltacoronavirus (PDCoV) is an emerging coronavirus that causes diarrhea in nursing piglets. Since its first outbreak in the United States in 2014, this novel porcine coronavirus has been detected worldwide, including in Korea. However, no PDCoV case has been reported since the last report in 2016 in Korea. In June 2022, the Korean PDCoV strain KPDCoV-2201 was detected on a farm where sows and piglets had black tarry and watery diarrhea, respectively. We isolated the KPDCoV-2201 strain from the intestinal samples of piglets and sequenced the viral genome. Genetically, the full-length genome and spike gene of KPDCoV-2201 shared 96.9-99.2% and 95.8-98.8% nucleotide identity with other global PDCoV strains, respectively. Phylogenetic analysis suggested that KPDCoV-2201 belongs to G1b. Notably, the molecular evolutionary analysis indicated that KPDCoV-2201 evolved from a clade different from that of previously reported Korean PDCoV strains and is closely related to the emergent Peruvian and Taiwanese PDCoV strains. Furthermore, KPDCoV-2201 had one unique and two Taiwanese strain-like amino acid substitutions in the receptor-binding domain of the S1 region. Our findings suggest the possibility of transboundary transmission of the virus and expand our knowledge about the genetic diversity and evolution of PDCoV in Korea.

7.
BMC Vet Res ; 18(1): 327, 2022 Aug 30.
Article in English | MEDLINE | ID: mdl-36042510

ABSTRACT

BACKGROUND: Porcine reproductive and respiratory syndrome virus (PRRSV) has caused huge economic losses in the global swine industry. Frequent genetic variations in this virus cause difficulties in controlling and accurately diagnosing PRRSV. METHODS: In this study, we investigated the genetic characteristics of PRRSV-1 and PRRSV-2 circulating in Korea from January 2018 to September 2021 and evaluated three one-step real-time reverse transcription polymerase chain reaction (RT-PCR) assays. RESULTS: A total of 129 lung samples were collected, consisting of 47 samples for PRRSV-1, 62 samples for PRRSV-2, and 20 PRRSV-negative samples. Nucleotide sequence analysis of open reading frames (ORFs) 5, ORF6, and ORF7 genes from PRRSV samples showed that PRRSV-1 belonged to subgroup A (43/47, 91.49%) and subgroup C (4/47, 8.51%), whereas PRRSV-2 was classified as lineage 1 (25/62, 40.32%), Korean lineage (Kor) C (13/62, 20.97%), Kor B (10/62, 16.13%), lineage 5 (9/62, 14.52%), and Kor A (5/62, 8.06%). Amino acid sequence analysis showed that the neutralizing epitope and T cell epitope of PRRSV-1, and the decoy epitope region and hypervariable regions of PRRSV-2 had evolved under positive selection pressure. In particular, the key amino acid substitutions were found at positions 102 and 104 of glycoprotein 5 (GP5) in some PRRSV-2, and at positions 10 and 70 of membrane protein (M) in most PRRSV-2. In addition, one-step real-time RT-PCR assays, comprising two commercial tests and one test recommended by the World Organization for Animal Health (OIE), were evaluated. CONCLUSION: The results revealed that two of the real-time RT-PCR assays had high sensitivities and specificities, whereas the real-time RT-PCR assay of the OIE had low sensitivity due to mismatches between nucleotides of Korean PRRSVs and forward primers. In this study, we genetically characterized recent PRRSV occurrences and evaluated three one-step real-time RT-PCR assays used in Korea.


Subject(s)
Porcine Reproductive and Respiratory Syndrome , Porcine respiratory and reproductive syndrome virus , Swine Diseases , Animals , Epitopes , Genetic Variation , Phylogeny , Porcine Reproductive and Respiratory Syndrome/diagnosis , Porcine respiratory and reproductive syndrome virus/genetics , Republic of Korea , Reverse Transcriptase Polymerase Chain Reaction/veterinary , Swine
8.
Viruses ; 14(6)2022 05 26.
Article in English | MEDLINE | ID: mdl-35746625

ABSTRACT

Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most important pathogens in the swine industry worldwide. In Korea, Fostera PRRS commercial modified live virus (MLV) vaccines have been used since 2014 to control the PRRSV infection. In this study, two PRRSV-2 strains (20D160-1 and 21R2-63-1) were successfully isolated, and their complete genomic sequences were determined. Genetic analysis showed that the two isolates have recombination events between the P129-like strain derived from the Fostera PRRS MLV vaccine and the strain of lineage 1. The 20D160-1 indicated that partial ORF2 to partial ORF4 of the minor parental KNU-1902-like strain, which belongs to Korean lineage C (Kor C) of lineage 1, was inserted into the major parental P129-like strain. The 21R2-63-1 revealed that partial ORF1b of the P129-like strain was inserted into the backbone of the NADC30-like strain. This study is the first to report natural recombinant strains between Fostera PRRS MLV-like strain and the field strain in Korea. These results may have significant implications for MLV evolution and the understanding of PRRSV genetic diversity, while highlighting the need for continuous surveillance of PRRSV.


Subject(s)
Porcine Reproductive and Respiratory Syndrome , Porcine respiratory and reproductive syndrome virus , Viral Vaccines , Viruses, Unclassified , Animals , DNA Viruses , Phylogeny , Porcine respiratory and reproductive syndrome virus/genetics , Recombination, Genetic , Swine , Vaccines, Attenuated , Viral Vaccines/genetics
9.
Virol J ; 19(1): 66, 2022 04 11.
Article in English | MEDLINE | ID: mdl-35410421

ABSTRACT

BACKGROUND: Porcine reproductive and respiratory syndrome virus (PRRSV) is a macrophage-tropic arterivirus with extremely high genetic and pathogenic heterogeneity that causes significant economic losses in the swine industry worldwide. PRRSV can be divided into two species [PRRSV1 (European) and PRRSV2 (North American)] and is usually diagnosed and genetically differentiated into several lineages based on the ORF5 gene, which constitutes only 5% of the whole genome. This study was conducted to achieve nonselective amplification and whole-genome sequencing (WGS) based on a simplified sequence-independent, single-primer amplification (SISPA) technique with next-generation sequencing (NGS), and to genetically characterize Korean PRRSV field isolates at the whole genome level. METHODS: The SISPA-NGS method coupled with a bioinformatics pipeline was utilized to retrieve full length PRRSV genomes of 19 representative Korean PRRSV strains by de novo assembly. Phylogenetic analysis, analysis of the insertion and deletion (INDEL) pattern of nonstructural protein 2 (NSP2), and recombination analysis were conducted. RESULTS: Nineteen complete PRRSV genomes were obtained with a high depth of coverage by the SISPA-NGS method. Korean PRRSV1 belonged to the Korean-specific subtype 1A and vaccine-related subtype 1C lineages, showing no evidence of recombination and divergent genetic heterogeneity with conserved NSP2 deletion patterns. Among Korean PRRSV2 isolates, modified live vaccine (MLV)-related lineage 5 viruses, lineage 1 viruses, and nation-specific Korean lineages (KOR A, B and C) could be identified. The NSP2 deletion pattern of the Korean lineages was consistent with that of the MN-184 strain (lineage 1), which indicates the common ancestor and independent evolution of Korean lineages. Multiple recombination signals were detected from Korean-lineage strains isolated in the 2010s, suggesting natural interlineage recombination between circulating KOR C and MLV strains. Interestingly, the Korean strain GGYC45 was identified as a recombinant KOR C and MLV strain harboring the KOR B ORF5 gene and might be the ancestor of currently circulating KOR B strains. Additionally, two novel lineage 1 recombinants of NADC30-like and NADC34-like viruses were detected. CONCLUSION: Genome-wide analysis of Korean PRRSV isolates retrieved by the SISPA-NGS method and de novo assembly, revealed complex evolution and recombination in the field. Therefore, continuous surveillance of PRRSV at the whole genome level should be conducted, and new vaccine strategies for more efficient control of the virus are needed.


Subject(s)
Porcine Reproductive and Respiratory Syndrome , Porcine respiratory and reproductive syndrome virus , Animals , Genome, Viral , Phylogeny , Porcine Reproductive and Respiratory Syndrome/epidemiology , Porcine respiratory and reproductive syndrome virus/genetics , Recombination, Genetic , Swine
10.
J Equine Vet Sci ; 105: 103721, 2021 10.
Article in English | MEDLINE | ID: mdl-34607681

ABSTRACT

Venereal diseases caused by bacteria are important to the equine industry due to economic losses caused by decline of conception rate in breeding horses. Therefore, identification of infected animals as well as the implementation of appropriate managerial procedures based on accurate diagnosis is critical. In this study, two types of multiplex real-time polymerase chain reaction with high sensitivity and specificity were developed for the simultaneous detection and differentiation of five commonly associated bacterial pathogens of venereal diseases in horses, consisting of Taylorella equigenitalis, Taylorella asinigenitalis, Pseudomonas aeruginosa, Klebsiella pneumoniae and Streptococcus zooepidemicus. The assay was applied to samples collected as part of the surveillance of T.equigenitalis infection in South Korea. Swab samples collected from horses in 2015 were tested. T. equigenitalis and K. pneumoniae was detected in 21 (21.0%) and two (2.0%) samples, respectively. No samples were positive for T. asinigenitalis, P. aeruginosa, and S. zooepidemicus. Application of this assay to an existing surveillance program has allowed for an enhanced surveillance for a wider range of venereal diseases of equine to be implemented in South Korea.


Subject(s)
Gram-Negative Bacterial Infections , Taylorella equigenitalis , Taylorella , Animals , Gram-Negative Bacterial Infections/veterinary , Horses , Real-Time Polymerase Chain Reaction/veterinary , Taylorella equigenitalis/genetics
11.
Arch Virol ; 166(10): 2803-2815, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34374840

ABSTRACT

Porcine reproductive and respiratory syndrome virus (PRRSV) is the most important pathogen in the Korean swine industry. Despite efforts including improved biosecurity and vaccination protocols, the virus continues to circulate and evolve. Based on phylogenetic analysis of open reading frame 5 (ORF5), Korean PRRSVs are known to form not only globally circulating lineages but also country-specific lineages (Lin Kor A, B, and C). To understand the recent epidemiological status of PRRSV in Korea, a total of 1349 ORF5 sequences of Korean PRRSV isolates from 2014 to 2019 were analyzed. Phylogenetic analysis was conducted using the maximum-likelihood method, and temporal changes in the relative prevalence of lineages were investigated. The analysis showed that PRRSV1 and PRRSV2 were both highly prevalent throughout the years examined. Among the PRRSV1 isolates, subgroup A (90.1%) and vaccine-like subgroup C (9.0%) composed most of the population. For PRRSV2 isolates, vaccine-like lineage 5 (36.3%) was dominant, followed by Lin Kor B (25.9%), Kor C (16.6%), lineage 1 (11.6%), and Kor A (9.1%). The PRRSV2 lineage 1 population increased from 2014 (1.8%) to 2019 (29.6%) in Korea due to the continual spread of sublineage 1.8 (NADC30-like) and introduction of sublineage 1.6 into the country. Additional genetic analysis, including analysis of non synonymous and synonymous mutations, revealed evidence of diversification and positive selection in immunologically important regions of the genome, suggesting that current vaccination is failing and promoting immune-mediated selection. Overall, these findings provide insights into the epidemiological and evolutionary dynamics of cocirculating viral lineages, and constant surveillance of PRRSV occurrence is needed.


Subject(s)
Porcine Reproductive and Respiratory Syndrome/virology , Porcine respiratory and reproductive syndrome virus/genetics , Viral Envelope Proteins/genetics , Amino Acid Sequence , Animals , Genetic Variation , Genotype , Phylogeny , Porcine Reproductive and Respiratory Syndrome/epidemiology , Porcine respiratory and reproductive syndrome virus/classification , Porcine respiratory and reproductive syndrome virus/isolation & purification , Prevalence , Republic of Korea/epidemiology , Swine , Viral Vaccines/genetics
12.
Pathogens ; 10(4)2021 Apr 02.
Article in English | MEDLINE | ID: mdl-33918404

ABSTRACT

Equine herpesvirus-1 (EHV-1) is an important pathogen in horses. It affects horses worldwide and causes substantial economic losses. In this study, for the first time, we characterized EHV-1 isolates from South Korea at the molecular level. We then aimed to determine the genetic divergences of these isolates by comparing them to sequences in databases. In total, 338 horse samples were collected, and 12 EHV-1 were isolated. We performed ORF30, ORF33, ORF68, and ORF34 genetic analysis and carried out multi-locus sequence typing (MLST) of 12 isolated EHV-1. All isolated viruses were confirmed as non-neuropathogenic type, showing N752 of ORF30 and highly conserved ORF33 (99.7-100%). Isolates were unclassified using ORF68 analysis because of a 118 bp deletion in nucleotide sequence 701-818. Seven EHV-1 isolates (16Q4, 19R166-1, 19R166-6, 19/10/15-2, 19/10/15-4, 19/10/18-2, 19/10/22-1) belonged to group 1, clade 10, based on ORF34 and MLST analysis. The remaining 5 EHV-1 isolates (15Q25-1, 15D59, 16Q5, 16Q40, 18D99) belonged to group 7, clade 6, based on ORF34 and MLST analysis.

13.
Vaccine ; 37(27): 3598-3604, 2019 06 12.
Article in English | MEDLINE | ID: mdl-31151802

ABSTRACT

Here, we constructed an attenuated live marker classical swine fever (CSF) vaccine (Flc-LOM-BErns) to eradicate CSF. This was done by taking infectious clone Flc-LOM, which is based on an attenuated live CSF vaccine virus (LOM strain), and removing the full-length classical swine fever virus (CSFV) Erns sequences and the 3' end (52 base pairs) of the CSFV capsid. These regions were substituted with the full-length bovine viral diarrhoea virus (BVDV) Erns gene sequence and the 3' end (52 base pairs) of the BVDV capsid gene. Sows were vaccinated with the Flc-LOM-BErns vaccine 3 weeks before insemination and then challenged with virulent CSFV at the early, mid- or late stages of pregnancy. We then examined transplacental transmission to the foetuses. Piglets born to sows vaccinated with Flc-LOM-BErns did not show vertical infection, regardless of challenge time. In addition, CSFV challenge did not affect the delivery date, weight or length of the foetus. Pregnant sows inoculated with the Flc-LOM-BErns vaccine were anti-CSF Erns antibody-negative and anti-BVDV Erns antibody-positive. Challenge of pregnant sows with virulent CSFV resulted in anti-CSF Erns antibody positivity. These results strongly indicate that differential diagnosis can be conducted between the Flc-LOM-BErns vaccinated animal and virulent CSFV affected animal by detecting antibody against BVDV Erns or CSF Erns gene. Therefore, the Flc-LOM-BErns vaccine may fulfil the function of differential diagnosis which required for DIVA vaccine.


Subject(s)
Classical Swine Fever Virus/immunology , Classical Swine Fever/prevention & control , Pregnancy Complications, Infectious/prevention & control , Viral Vaccines/immunology , Animals , Antibodies, Viral/blood , Female , Infectious Disease Transmission, Vertical/prevention & control , Pregnancy , Swine , Treatment Outcome , Vaccines, Attenuated/administration & dosage , Vaccines, Attenuated/immunology , Vaccines, Marker/administration & dosage , Vaccines, Marker/immunology , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/immunology , Viral Vaccines/administration & dosage
14.
Vet Microbiol ; 193: 36-41, 2016 Sep 25.
Article in English | MEDLINE | ID: mdl-27599928

ABSTRACT

The classical swine fever (CSF) vaccine, which is derived from the LOM strain of the CSF virus (CSFV), induces protective immunity against CSFV infection. However, several factors influence vaccine efficacy. Evidence suggests that infection by porcine reproductive and respiratory syndrome virus (PRRSV) and/or porcine circovirus 2 (PCV2) reduces the efficacy of several vaccines. Here, we examined the effect of PRRSV or PCV2 alone or co-infection by PRRSV/PCV2 on the potency of the LOM vaccine in pigs. Neither CSFV antibody levels nor the period during which CSFV antigens were detectable in LOM-vaccinated pigs were negatively affected by infection by PRRSV or PCV2. However, co-infection with PRRSV/PCV2 may affect the replication or activity of the CSF vaccine virus in pigs vaccinated with the LOM strain, although CSFV antibody levels were not negatively affected. Nevertheless, the LOM vaccine afforded complete protection against a virulent strain of CSFV.


Subject(s)
Circoviridae Infections/veterinary , Classical Swine Fever Virus/immunology , Classical Swine Fever/prevention & control , Porcine Reproductive and Respiratory Syndrome/immunology , Porcine respiratory and reproductive syndrome virus/immunology , Viral Vaccines/immunology , Animals , Antibodies, Viral/blood , Circoviridae Infections/immunology , Circovirus/immunology , Classical Swine Fever/immunology , Coinfection , Swine , Vaccination , Viral Vaccines/standards , Virus Replication
15.
Vector Borne Zoonotic Dis ; 16(2): 131-5, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26771529

ABSTRACT

Rift Valley fever (RVF) is an acute mosquito-borne viral zoonotic disease that affects mainly domestic ruminants and humans. RVF virus (RVFV) was first identified in Kenya in 1931 and was reported to be endemic in Africa but has recently spread to the Arabian Peninsula. With increasing climate change and globalization of trade in animals and animal products, there is great concern that the disease will spread worldwide to regions such as Europe, Asia, and the Americas. Although RVFV has not been reported in the Republic of Korea (ROK), the possibility of RVFV introduction is increasing because transmissible mosquito vectors are present and direct flights to Africa were added in 2012. For these reasons, we conducted a surveillance study to detect RVFV in mosquito vectors collected around the airport and harbor from 2012 to 2013. A total of 36,734 mosquitoes were collected and tested by real-time RT-PCR. A total of 1837 mosquito pools were used, and all were confirmed to be negative. This is the first report in the ROK concerning RVFV surveillance in mosquito vectors, and continuous surveillance will be conducted for the early warning of RVFV introduction.


Subject(s)
Culicidae/virology , Insect Vectors/virology , Rift Valley fever virus , Animals , Republic of Korea , Zoonoses/virology
16.
BMC Vet Res ; 11: 270, 2015 Oct 24.
Article in English | MEDLINE | ID: mdl-26497392

ABSTRACT

BACKGROUND: Schmallenberg virus (SBV), Akabane virus (AKAV) and Aino virus (AINV) are members of the Simbu serogroup within the genus Orthobunyavirus, family Bunyaviridae, which can cause reproductive disorders including abortion, stillbirth and congenital malformation in ruminants. Because, the clinical signs are similar, confirmatory diagnosis requires viral detection to differentiate infection between these three viruses. METHODS: In this study, a one-step multiplex reverse-transcriptase quantitative PCR (one-step mRT-qPCR) was developed for the simultaneous detection and differentiation of SBV, AKAV and AINV. RESULTS: The detection limit of the one-step mRT-qPCR for SBV, AKAV and AINV were 2.4 copies (10 (0.6) TCID 50/ml), 96.2 copies (10 (1.5) TCID 50/ml) and 52.3 copies (10 (1.2) TCID 50/ml), respectively. Various field samples such as bovine serum, bovine whole blood, bovine brain, goat serum and Culicoides were analyzed using the one-step mRT-qPCR and compared with previously published RT-qPCRs. The test results of the field samples were identical for the one-step mRT-qPCR and RT-qPCRs, which showed all samples to be negative for SBV, AKAV and AINV, except for one bovine brain sample (1/123) that was positive for AKAV. CONCLUSION: The one-step mRT-qPCR allows for the simultaneous detection of three viral pathogens (SBV, AKAV and AINV) that cause reproductive failure.


Subject(s)
Bunyaviridae Infections/veterinary , Cattle Diseases/virology , Orthobunyavirus/isolation & purification , Reverse Transcriptase Polymerase Chain Reaction/veterinary , Animals , Bunyaviridae Infections/diagnosis , Bunyaviridae Infections/virology , Cattle , Orthobunyavirus/classification , Orthobunyavirus/genetics , Reproducibility of Results , Reverse Transcriptase Polymerase Chain Reaction/methods , Sensitivity and Specificity
17.
Trop Anim Health Prod ; 47(7): 1427-30, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26024956

ABSTRACT

Rift Valley fever is a mosquito-borne zoonotic disease of domestic ruminants. This disease causes abortions in pregnant animals, and it has a high mortality rate in newborn animals. Recently, a Rift Valley fever virus (RVFV) outbreak in the Arabian Peninsula increased its potential spread to new regions worldwide. In non-endemic or disease-free countries, early detection and surveillance are important for preventing the introduction of RVFV. In this study, a serological surveillance was conducted to detect antibodies against RVFV. A total of 2382 serum samples from goats and cattle were randomly collected from nine areas in South Korea from 2011 to 2013. These samples were tested for antibodies against RVFV, using commercial ELISA kits. None of the goats and cattle were positive for antibodies against RVFV. This finding suggests that this disease is not present in South Korea, and furthermore presents the evidence of the RVFV-free status of this country.


Subject(s)
Abortion, Veterinary/epidemiology , Disease Outbreaks/veterinary , Rift Valley Fever/epidemiology , Rift Valley fever virus/isolation & purification , Abortion, Veterinary/blood , Abortion, Veterinary/prevention & control , Animals , Antibodies, Viral/blood , Cattle , Enzyme-Linked Immunosorbent Assay/veterinary , Female , Goats , Male , Pregnancy , Republic of Korea/epidemiology , Rift Valley Fever/blood , Rift Valley Fever/prevention & control , Rift Valley fever virus/immunology
18.
BMC Vet Res ; 11: 78, 2015 Mar 26.
Article in English | MEDLINE | ID: mdl-25888836

ABSTRACT

BACKGROUND: Viral agents associated with reproductive failure such as Aujeszky's disease virus (ADV), encephalomyocarditis virus (EMCV), and porcine parvovirus (PPV) have also been identified in European wild boar. To screen for the presence of antibodies against ADV, EMCV, and PPV from wild boar (Sus scrofa) in South Korea, 481 serum samples were collected from wild boar hunted between December 2010 and May 2011. RESULTS: Of the 481 serum samples tested, 47 (9.8%) and 37 (7.7%) were seropositive for ADV and EMCV antibodies, respectively, based on a neutralization test (VNT), and 142 (29.5%) were seropositive for PPV antibodies based on a hemagglutination inhibition (HI) test. CONCLUSIONS: This was the first survey to identify the seroprevalence of the three major viruses associated with reproductive failure in the wild boar population of South Korea. Wild boar may act as a reservoir for many viruses that cause infectious diseases in domestic pigs. Thus, strict prevention and control measures, such as continuous wildlife disease surveillance and strategic methods of downsizing the population density, should be implemented to prevent disease transmission from wild boar to domestic pigs.


Subject(s)
Antibodies, Viral/blood , Cardiovirus Infections/veterinary , Parvoviridae Infections/veterinary , Pseudorabies/virology , Sus scrofa , Swine Diseases/virology , Animals , Cardiovirus Infections/blood , Cardiovirus Infections/epidemiology , Cardiovirus Infections/virology , Encephalomyocarditis virus , Herpesvirus 1, Suid , Parvoviridae Infections/blood , Parvoviridae Infections/epidemiology , Parvoviridae Infections/virology , Parvovirus, Porcine , Pseudorabies/blood , Pseudorabies/epidemiology , Reproduction , Republic of Korea/epidemiology , Seroepidemiologic Studies , Serologic Tests , Swine , Swine Diseases/epidemiology
19.
J Vet Med Sci ; 77(1): 109-12, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25298239

ABSTRACT

Serum samples from 1,011 wild boars hunted in 2012 were collected for serological surveillance for 4 subtypes (pandemic A (H1N1) 2009 and classical H1N1, H1N2 and H3N2) of swine influenza virus (SIV). Samples from 12 of the boars were identified as positive for SIV (pandemic A (H1N1) 2009, n=9; classical H1N1, n=2; and H1N2, n=1) by a hemagglutination inhibition test (HI test) and a nucleoprotein (NP)-based enzyme-linked immunosorbent assay (NP-ELISA). Although the overall seroprevalence of SIV in the Korean wild boar population was somewhat low compared with that in China and the U.S.A., the apparent prevalence of pandemic H1N1 was notable. Therefore, continuous monitoring of the wild boar population is needed as it may be a major reservoir for pandemic H1N1, facilitating its spread to humans and domestic pigs.


Subject(s)
Influenza A virus/isolation & purification , Orthomyxoviridae Infections/veterinary , Sus scrofa , Animals , Influenza A virus/classification , Orthomyxoviridae Infections/epidemiology , Orthomyxoviridae Infections/virology , Republic of Korea/epidemiology , Seroepidemiologic Studies
20.
J Vet Sci ; 15(1): 91-7, 2014.
Article in English | MEDLINE | ID: mdl-24136209

ABSTRACT

Feline leukemia virus (FeLV) causes a range of neoplastic and degenerative diseases in cats. To obtain a more sensitive and convenient diagnosis of the disease, we prepared monoclonal antibodies specific for the FeLV p27 to develop a rapid diagnostic test with enhanced sensitivity and specificity. Among these antibodies, we identified two clones (hybridomas 8F8B5 and 8G7D1) that specifically bound to FeLV and were very suitable for a diagnostic kit. The affinity constants for 8F8B5 and 8G7D1 were 0.35 × 108 and 0.86 × 108, respectively. To investigate the diagnostic abilities of the rapid kit using these antibodies, we performed several clinical studies. Assessment of analytical sensitivity revealed that the detection threshold of the rapid diagnostic test was 2 ng/mL for recombinant p27 and 12.5 × 104 IU/mL for FeLV. When evaluating 252 cat sera samples, the kit was found to have a kappa value of 0.88 compared to polymerase chain reaction (PCR), indicating a significant correlation between data from the rapid diagnostic test and PCR. Sensitivity and specificity of the kit were 95.2% (20/21) and 98.5% (257/261), respectively. Our results demonstrated that the rapid diagnostic test would be a suitable diagnostic tool for the rapid detection of FeLV infection in cats.


Subject(s)
Diagnostic Tests, Routine/veterinary , Gene Products, gag/blood , Leukemia Virus, Feline/isolation & purification , Leukemia, Feline/diagnosis , Animals , Antibodies, Monoclonal/blood , Cats , Female , Leukemia Virus, Feline/immunology , Mice, Inbred BALB C , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...